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CHAPTER

Long-TermDynamics or
Equilibrium

The previous chapters in this unit focused on how a biological process that can be in one of a
few states (such as disease states of susceptible, exposed, infected, and immune) can be modeled
to project what fraction of a population changes states over short periods of time. Our objective
in this chapter is to extend these ideas to long time periods. In the landscape change case,
we may want to know the long-term implications of disturbances, such as fire, storms, and
insect outbreaks, on the vegetation across the landscape. We essentially want to take the matrix
multiplication approachwe developed earlier and apply it over many time periods. An important
question in landscape ecology is whether, overall, the fraction of the landscape in each class is
always changing or whether the landscape stabilizes. That is, does the landscape eventually have
classes or types each of which occupies a certain fraction of the total landscape and then stays
near these values?
You can certainly think of simple cases in which a landscape has been completely urbanized

so that there is no longer any forest or in which a region is dammed so that area that was forest
is now underwater in a lake. In these cases, it is easy to intuit what happens in the long term, but
in many real-world situations, such as recurring fires, it is not easy to tell what happens if fires
don’t occur too often, particularly from the perspective of the whole landscape. For example,
about 10% of the land area of the nonpolar regions of the planet are maintained in savannas
(a grassy or herbaceous layer with a thin overstory canopy of trees) because of disturbances,
such as fire and foraging by herbivores. So our objective in this chapter is to point out that
matrix methods can be used to determine the long-term structure of a landscape. Furthermore,
we can determine whether this long-term structure is stable in the face of perturbations, such as
a short period of changed environmental conditions that lead to higher fire frequencies and thus
a changed landscape or a period of harvesting in which forest is removed. A biological system
that stays mostly unchanged over time is said to be at equilibrium, and it is stable if it returns
to this equilibrium following a small change in the system. This is closely related to the idea of
homeostasis in physiology, which we will discuss later in the text.
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142 Chapter 8

8.1 Notion of an Equilibrium
Recall the succession models of Section 6.3. After a long enough time period, if you make some
additional calculations, you will see that the fraction of the landscape in each class (submerged,
saturated, and dry) will approach some constant. In the simplest model (Example 6.3), all the
land will move to the “climax” state, in this case, the dry state. Thus, the vector that describes
the landscape would eventually become very close to




0
0
1



 .

However, when we add more complexity to the system (as in Example 6.6), each class of the
system will eventually approach some fixed fraction. What we want to do now is define a
mathematical method to find these “final” states: the jargon for this is that we are finding an
“eigenvector” for the system. In the models presented in this chapter, the eigenvector is a vector
whose elements tell us what fraction of the system each class will have after a long time. This is
also called the long-term equilibrium state of the system.

8.2 Eigenvectors
Suppose that we are modeling a nonfatal disease for which either an individual is susceptible to
acquiring the disease (S), is infected with the disease (I), or has recovered from the disease and
is susceptible again (we built such a model in Example 6.6 for a common cold spreading among
a dormitory population). Suppose that in this model, each day 10% of the susceptibles become
infected and 20% of the infected recover and become susceptible again. Then, the transfer matrix
T that models the daily change in this population is

T =
[
0.9 0.2
0.1 0.8

]
.

(Review Example 6.6 for how such a matrix is constructed.) Suppose that at time t = 0, we
have 297 susceptible individuals and three infected individuals, and we assume that no new
individuals enter the population and no one in the population dies or leaves. Thus, the population
size remains at a constant size of 300 individuals. Then, the vector

x(0) =
[
297
3

]

describes the structure of the population at time t = 0.
What do we expect to happen over time? How many individuals do we expect to be infected

after 50 days? 100 days? 365 days?
Recall that to get the population structure after 1 day, t = 1, we would multiply

x(1) = Tx(0).

If we then wanted to know the population structure after 2 days, t = 2, we would multiply
again:

x(2) = Tx(1) = T
(
Tx(0)

)
= T2x(0).
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Long-Term Dynamics or Equilibrium 143

In general, we have

x(1) = Tx(0) =
[
267.9
32.1

]

x(2) = Tx(1) = T2x(0) =
[
247.5
52.5

]

x(3) = Tx(2) = T3x(0) =
[
233.3
66.7

]

...

x(t) = Tx(t − 1) = Ttx(0),

Thus,

x(50) =
[
0.9 0.2
0.1 0.8

]50 [297
3

]
=
[
200
100

]
,

and

x(51) =
[
0.9 0.2
0.1 0.8

]51 [297
3

]
=
[
200
100

]
.

It appears that after 50 days, the proportion of the population in each class (or compartment) is
no longer changing. We will refer to this characteristic as the equilibrium, that is, the situation
in which the proportion or number in each class remains constant after some period of time.
The vector representing the proportion or number in each class at equilibrium is known as an
eigenvector. In the disease model we just considered,

[
200
100

]

is an eigenvector. Now, just because the population structure is at equilibrium does not mean
that individuals are no longer moving between the susceptible and infected classes. There is still
movement between the classes; however, the movement is such that the proportion in each class
remains constant.
We would like to develop a mathematical method for determining the eigenvector without

having to take large powers of matrices. Notice that at equilibrium, x(t) = x(t − 1). Thus,

x(t) = Tx(t − 1)

= Tx(t)
[
x1
x2

]
=
[
0.9 0.2
0.1 0.8

] [
x1
x2

]
. (8.1)

Recall from Chapter 6 that a matrix multiplication equation such as this can be written as the
system of equations

x1 = 0.9x1 + 0.2x2. (8.2)

x2 = 0.1x1 + 0.8x2. (8.3)

Notice that we can rewrite Equation (8.2) as

0 = −0.1x1 + 0.2x2 (8.4)
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144 Chapter 8

and that we can rewrite Equation (8.3) as

0 = 0.1x1 − 0.2x2. (8.5)

This shows that the Equations (8.2) and (8.3) are equivalent (since Equations (8.4) and (8.5)
are multiples of each other). Since the two equations are equivalent, we essentially have one
equation and two unknowns; therefore, we will not be able to uniquely determine both values
(only one in terms of the other). Thus, we will use one of the equations to solve for x1 in terms
of x2 and then choose a value for x2.
If we solve Equation (8.2) for x1 in terms of x2, we get

0.1x1 = 0.2x2
x1 = 2x2. (8.6)

Let us choose x2 = 1; then x1 = 2x2 = 2. So, an eigenvector is

[
2
1

]
.

At this point, you should be thinking, “Doesn’t this mean an eigenvector is dependent on what
value I choose for x2?” Indeed, it does. If we had instead chosen x2 = 50, then x1 = 2x2 = 100,
and the eigenvector would be [

100
50

]
.

An eigenvector for this system is any point (x1, x2) on the line 0 = −0.1x1 + 0.2x2. Since the
eigenvector is not unique, we will express the eigenvector in a normalized form (a form that is
unique). To normalize any vector, sum the values of each element of the vector and then divide
each element of the vector by that sum. So, if normalizing

[
2
1

]
,

the sum of the elements is 3, and the normalized eigenvector is

[
2/3
1/3

]
.

If normalizing [
100
50

]
,

the sum of the elements is 150, and the normalized eigenvector is

[
100/150
50/150

]
=
[
2/3
1/3

]
.

Notice that no matter what value we choose for x2, the normalized eigenvector will always be
the same.
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Now, recall that our population of susceptible and infected individuals was originally com-
prised of 300 individuals. So at equilibrium, how many individuals are susceptible, and how
many are infected? To answer this question, we simply multiply the normalized eigenvector by
the total population size, 300:

300
[
2/3
1/3

]
=
[
200
100

]
.

This is what we expected on the basis of our earlier investigations.
Now, let us apply this method to find the normalized eigenvalue to the ecological succession

model that we constructed and investigated in Examples 6.5 and 7.5.

Example 8.1 (Ecological Succession Equilibrium)

Recall that in Examples 6.5 and 7.5, we developed a model for wetland ecological succes-
sion consisting of three class: submerged wetlands, saturated but nonsubmerged land, and
dry land. The model was defined by the matrix equation

v(t + 1) =




0.94 0.02 0.01
0.05 0.86 0.06
0.01 0.12 0.93



 v(t).

Find the eigenvector that describes the composition of the wetlands at equilibrium.

Solution: We need to find u, s, and d at equilibrium when



u
s
d



 =




0.94 0.02 0.01
0.05 0.86 0.06
0.01 0.12 0.93








u
s
d



 , (8.7)

where u is the submerged class, s is the saturated by nonsubmerged class, and d is the dry
class. We can represent Equation (8.7) as a system of equations:

u = 47
50

u+ 1
50

s+ 1
100

d. (8.8)

s = 1
20

u+ 43
50

s+ 3
50

d. (8.9)

d = 1
100

u+ 3
25

s+ 93
100

d. (8.10)

Here, each of the coefficients has been rewritten as a fraction (to simplify the algebra).
Notice that the sum of Equations (8.8) and (8.9) gives an equation that is the same as
multiplying Equation (8.10) by −1. Since the third equation can be written as a sum of
the first two, we gain no additional information from the third equation. This means that,
we essentially have two equations and three variables. Thus, we must write two of the
variables in terms of the third variable and then pick a value for the third variable. Here,
we will write u and s in terms of d.

(Continued)
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First, we solve Equation (8.8) for u in terms of s and d:

3
50

u = 1
50

s+ 1
100

d

u = 1
3
s+ 1

6
d. (8.11)

Next, we substitute Equation (8.11) into Equation (8.9):

s = 1
20

(
1
3
s+ 1

6
d
)

+ 43
50

s+ 3
50

d

= 1
60

s+ 1
120

d + 43
50

s+ 3
50

d

= 263
300

s+ 41
600

d

37
300

s = 41
600

d

s = 41
74

d. (8.12)

Now we can substitute Equation (8.12) into Equation (8.11) to get an equation for u in
terms of only d:

u = 1
3

(
41
74

d
)

+ 1
6
d

= 41
222

d + 1
6
d

= 13
37

d. (8.13)

Let us choose d = 74; then

u = 13
37

· 74 = 26, and s = 41
74

· 74 = 41.

Thus, we have the eigenvector



26
41
74





that, when normalized, is



26/141
41/141
74/141



 ≈




0.184
0.291
0.525



 .
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8.3 Stability
In this section, we ask what would happen if we started with a different initial condition, a
different v(0).
Consider the model that we developed for the spread of a nonfatal disease with two classes S

and I described by Equation (8.1) at equilibrium. We saw that if there was an initial population
of 300 individuals with only 3 that were infected, at equilibrium there were 200 susceptible
individuals and 100 infected individuals. That is, an eigenvector for the system is

[
200
100

]
.

What would happen if we started with a different ratio of susceptible to infected individuals?
Would we still reach the same equilibrium?
Consider starting with

x(0) =
[
10
290

]
,

that is, starting with most of the population infected. Then

x(1) =
[
0.9 0.2
0.1 0.8

] [
10
290

]
=
[

67.0
233.0

]

x(2) =
[
0.9 0.2
0.1 0.8

]2 [ 10
290

]
=
[
106.9
193.1

]

x(3) =
[
0.9 0.2
0.1 0.8

]3 [ 10
290

]
=
[
134.8
165.2

]

...

x(10) =
[
0.9 0.2
0.1 0.8

]10 [ 10
290

]
=
[
194.6
105.4

]

...

x(20) =
[
0.9 0.2
0.1 0.8

]20 [ 10
290

]
=
[
199.8
100.2

]

...

x(70) =
[
0.9 0.2
0.1 0.8

]70 [ 10
290

]
=
[
200
100

]
.

Thus, we can see that, with a very different initial condition, we still approach the same
equilibrium.
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What if we started with a different population size? What do you expect would happen?
For example, say that we started with a population of 30 individuals with only 1 infected
at the initial time:

x(1) =
[
0.9 0.2
0.1 0.8

] [
29
1

]
=
[
26.3
3.7

]

x(2) =
[
0.9 0.2
0.1 0.8

]2 [29
1

]
=
[
24.4
5.6

]

x(3) =
[
0.9 0.2
0.1 0.8

]3 [29
1

]
=
[
23.1
6.9

]

...

x(10) =
[
0.9 0.2
0.1 0.8

]10 [29
1

]
=
[
20.3
9.7

]

...

x(20) =
[
0.9 0.2
0.1 0.8

]20 [29
1

]
=
[
20.0
10.0

]

...

x(70) =
[
0.9 0.2
0.1 0.8

]70 [29
1

]
=
[
20.0
10.0

]
.

After enough time has passed, the proportion in each class is the same in both cases: 2
3 in the

susceptible class and 1
3 in the infected class.

Why does this happen? Recall that when we were solving for the eigenvector, we never utilized
the intial condition information. The eigenvector depends only on the model, not on the initial
condition. Thus, it does not matter what initial condition we start with: we will always approach
the same equilibrium.
If the eigenvector depends only on the model, then we should expect that if we change one of

the values in the transfer matrix, it will change the model’s normalized eigenvalue.

Example 8.2 (Changing Transfer Rates)

Consider the model that we developed for the spread of a nonfatal disease with two classes
S and I described by Equation (8.1) at equilibrium. Suppose now that each day, 30% of
the infected individuals recover and become susceptible again (instead of the 20% we had
before). Now the model at equilibrium becomes

[
x1
x2

]
=
[
0.9 0.3
0.1 0.7

] [
x1
x2

]
.

Find the normalized eigenvalue for this model. How does changing the recovery rate of
the infected class change the normalized eigenvalue? Does it make biological sense?

(Continued)
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Solution: Our model can be written as the system of equations:

x1 = 0.9x1 + 0.3x2. (8.14)

x2 = 0.1x1 + 0.7x2. (8.15)

Notice that we can rewrite Equations (8.14) and (8.15) as

0 = −0.1x1 + 0.3x2. (8.16)

0 = 0.1x1 − 0.3x2. (8.17)

Since Equation (8.16) can be written as −1 times Equation (8.17), the two equations are
equivalent. Thus, we will use one of the equations to solve for x1 in terms of x2 and then
choose the value of x2. If we solve Equation (8.14) for x1 in terms of x2, we get

x1 = 3x2.

Let us choose x2 = 1; then x1 = 3. Thus, an eigenvector of this model is

[
3
1

]
.

The normalized eigenvector for this system is

[
3/4
1/4

]
.

Thus, we see that when we increase the recovery rate of the infected class, the normalized
eigenvector has a smaller proportion in the infected class. This does indeed make biological
sense and you should guess what happens to the equilibrium structure of the population
as the recovery rate continues to increase.

8.4 Matlab Skills
In Matlab, we use the function eig to find eigenvalues (which we will discuss in the following
chapter) and eigenvectors. Since the output of this function will not be completely under-
stood until the material of the next chapter is covered, we postpone demonstrating how to
find eigenvectors in Matlab until the end of the next chapter.

8.5 Exercises
8.1 Could the matrix below represent a transfer matrix? Why or why not?

[
0.7 0.2
0.3 0.6

]
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8.2 Write a matrix of size 3× 3 that is a transfer matrix with two of its entries being 0.

8.3 Suppose that an eigenvector of a transfer matrix is
[
20
10

]
.

Write the normalized eigenvector for this matrix.

8.4 Suppose that an eigenvector of a transfer matrix is
[
0.2
0.3

]
.

Write the normalized eigenvector for this matrix.

8.5 Suppose that the normalized eigenvector of a transfer matrix in a population model with
2 classes is [

0.4
0.6

]
.

Explain the meaning of that vector in terms of the equilibrium structure of the population
after a long time.

For each transfer matrix in Exercises 8.6 and 8.7, find the normalized eigenvector that
would describe the equilibrium structure of the system (using that matrix).

8.6
[
0.7 0.9
0.3 0.1

]

8.7
[
0.7 0.4
0.3 0.6

]

8.8 Suppose that you aremodeling a nonfatal infectious disease. You assume the people within
the population that you are modeling are either susceptible to infection or infected. The
following flow diagram shows the rates at which individuals flow from one category to
the other.

S I

0.35/week

0.82/week

We formed a transfer matrix for this system in Exercise 6.5a.

(a) Find the normalized eigenvector that describes the system’s equilibrium structure.
(b) Suppose that the rate of infection increases from 0.35/week to 0.50/week. How does

this change the equilibrium structure?
(c) Suppose that the rate of infection decreases from 0.35/week to 0.25/week. How does

this change the equilibrium structure?

8.9 (From [16]) Strontium-90 is deposited into pastureland by rainfall. To study how this
material is cycled through the ecosystem,wedivide the system into four compartments and
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consider how much Strontium-90 is in each compartment: grasses (G), soil (S), streams
(W), and dead organic matter (O). Suppose that the time step is 1 month. A flow diagram
displaying the transfer rates of Strontium-90 between compartments is shown below.

G S

WO

(leaching) 0.05/mo

0.01/mo (growth)

(death) 0.1/mo 0.01/mo (runoff )0.2/mo

(decomposition)

We formed a transfer matrix for this system in Exercise 6.5c.

(a) Find the normalized eigenvector that describes the system’s equilibrium structure.
(b) Using Matlab, find approximately how many months pass before the system reaches

its equilibrium structure if 100% of the strontium-90 starts in the grass.
(c) Using Matlab, find approximately how many months pass before the system reaches

its equilibrium structure if 100% of the strontium-90 starts in the streams.
(d) Using Matlab, find approximately how many months pass before the system reaches

its equilibrium structure if 100% of the strontium-90 starts in the dead organic matter.

8.10 (From [16]) Radioisotopes (such as phosphorus-32 and carbon-14) have been used
to study the transfer of nutrients in food chains. The flow diagram below shows a
compartmental representation of a simple aquatic food chain with phytoplankton (P),
zooplankton (Z), and water (W) and the transfer rates of nutrients between these
compartments.

P

W Z

0.06/hr (respiration)

0.02/hr (uptake of dissolved tracer)

0.01/hr

(uptake of dissolved tracer)

0.05/hr (excretion)

0.06/hr (grazing)

One hundred units (e.g., microcuries) of tracer are dissolved in the water of an aquarium
containing a species of phytoplankton and a species of zooplankton.

(a) Construct the transfer matrix that represents the above flow diagram.
(b) Predict the state of the system over the next 6 hours.
(c) Find the normalized eigenvector that describes the system’s equilibrium structure.

�F��3ULQFHWRQ�8QLYHUVLW\�3UHVV�����

1R�SDUW�RI�WKLV�ERRN�PD\�EH�GLVWULEXWHG��
SRVWHG��RU�UHSURGXFHG�LQ�DQ\�IRUP�E\�
GLJLWDO�RU�PHFKDQLFDO�PHDQV�ZLWKRXW�

SULRU�ZULWWHQ�SHUPLVVLRQ�RI�WKH�SXEOLVKHU


